3.1502 \(\int \frac{(a+b x)^{7/2}}{(c+d x)^{3/2}} \, dx\)

Optimal. Leaf size=174 \[ \frac{7 b (a+b x)^{5/2} \sqrt{c+d x}}{3 d^2}-\frac{35 b (a+b x)^{3/2} \sqrt{c+d x} (b c-a d)}{12 d^3}+\frac{35 b \sqrt{a+b x} \sqrt{c+d x} (b c-a d)^2}{8 d^4}-\frac{35 \sqrt{b} (b c-a d)^3 \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{8 d^{9/2}}-\frac{2 (a+b x)^{7/2}}{d \sqrt{c+d x}} \]

[Out]

(-2*(a + b*x)^(7/2))/(d*Sqrt[c + d*x]) + (35*b*(b*c - a*d)^2*Sqrt[a + b*x]*Sqrt[c + d*x])/(8*d^4) - (35*b*(b*c
 - a*d)*(a + b*x)^(3/2)*Sqrt[c + d*x])/(12*d^3) + (7*b*(a + b*x)^(5/2)*Sqrt[c + d*x])/(3*d^2) - (35*Sqrt[b]*(b
*c - a*d)^3*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/(8*d^(9/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0891534, antiderivative size = 174, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.263, Rules used = {47, 50, 63, 217, 206} \[ \frac{7 b (a+b x)^{5/2} \sqrt{c+d x}}{3 d^2}-\frac{35 b (a+b x)^{3/2} \sqrt{c+d x} (b c-a d)}{12 d^3}+\frac{35 b \sqrt{a+b x} \sqrt{c+d x} (b c-a d)^2}{8 d^4}-\frac{35 \sqrt{b} (b c-a d)^3 \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{8 d^{9/2}}-\frac{2 (a+b x)^{7/2}}{d \sqrt{c+d x}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x)^(7/2)/(c + d*x)^(3/2),x]

[Out]

(-2*(a + b*x)^(7/2))/(d*Sqrt[c + d*x]) + (35*b*(b*c - a*d)^2*Sqrt[a + b*x]*Sqrt[c + d*x])/(8*d^4) - (35*b*(b*c
 - a*d)*(a + b*x)^(3/2)*Sqrt[c + d*x])/(12*d^3) + (7*b*(a + b*x)^(5/2)*Sqrt[c + d*x])/(3*d^2) - (35*Sqrt[b]*(b
*c - a*d)^3*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/(8*d^(9/2))

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(a+b x)^{7/2}}{(c+d x)^{3/2}} \, dx &=-\frac{2 (a+b x)^{7/2}}{d \sqrt{c+d x}}+\frac{(7 b) \int \frac{(a+b x)^{5/2}}{\sqrt{c+d x}} \, dx}{d}\\ &=-\frac{2 (a+b x)^{7/2}}{d \sqrt{c+d x}}+\frac{7 b (a+b x)^{5/2} \sqrt{c+d x}}{3 d^2}-\frac{(35 b (b c-a d)) \int \frac{(a+b x)^{3/2}}{\sqrt{c+d x}} \, dx}{6 d^2}\\ &=-\frac{2 (a+b x)^{7/2}}{d \sqrt{c+d x}}-\frac{35 b (b c-a d) (a+b x)^{3/2} \sqrt{c+d x}}{12 d^3}+\frac{7 b (a+b x)^{5/2} \sqrt{c+d x}}{3 d^2}+\frac{\left (35 b (b c-a d)^2\right ) \int \frac{\sqrt{a+b x}}{\sqrt{c+d x}} \, dx}{8 d^3}\\ &=-\frac{2 (a+b x)^{7/2}}{d \sqrt{c+d x}}+\frac{35 b (b c-a d)^2 \sqrt{a+b x} \sqrt{c+d x}}{8 d^4}-\frac{35 b (b c-a d) (a+b x)^{3/2} \sqrt{c+d x}}{12 d^3}+\frac{7 b (a+b x)^{5/2} \sqrt{c+d x}}{3 d^2}-\frac{\left (35 b (b c-a d)^3\right ) \int \frac{1}{\sqrt{a+b x} \sqrt{c+d x}} \, dx}{16 d^4}\\ &=-\frac{2 (a+b x)^{7/2}}{d \sqrt{c+d x}}+\frac{35 b (b c-a d)^2 \sqrt{a+b x} \sqrt{c+d x}}{8 d^4}-\frac{35 b (b c-a d) (a+b x)^{3/2} \sqrt{c+d x}}{12 d^3}+\frac{7 b (a+b x)^{5/2} \sqrt{c+d x}}{3 d^2}-\frac{\left (35 (b c-a d)^3\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{c-\frac{a d}{b}+\frac{d x^2}{b}}} \, dx,x,\sqrt{a+b x}\right )}{8 d^4}\\ &=-\frac{2 (a+b x)^{7/2}}{d \sqrt{c+d x}}+\frac{35 b (b c-a d)^2 \sqrt{a+b x} \sqrt{c+d x}}{8 d^4}-\frac{35 b (b c-a d) (a+b x)^{3/2} \sqrt{c+d x}}{12 d^3}+\frac{7 b (a+b x)^{5/2} \sqrt{c+d x}}{3 d^2}-\frac{\left (35 (b c-a d)^3\right ) \operatorname{Subst}\left (\int \frac{1}{1-\frac{d x^2}{b}} \, dx,x,\frac{\sqrt{a+b x}}{\sqrt{c+d x}}\right )}{8 d^4}\\ &=-\frac{2 (a+b x)^{7/2}}{d \sqrt{c+d x}}+\frac{35 b (b c-a d)^2 \sqrt{a+b x} \sqrt{c+d x}}{8 d^4}-\frac{35 b (b c-a d) (a+b x)^{3/2} \sqrt{c+d x}}{12 d^3}+\frac{7 b (a+b x)^{5/2} \sqrt{c+d x}}{3 d^2}-\frac{35 \sqrt{b} (b c-a d)^3 \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{8 d^{9/2}}\\ \end{align*}

Mathematica [C]  time = 0.0671263, size = 73, normalized size = 0.42 \[ \frac{2 (a+b x)^{9/2} \left (\frac{b (c+d x)}{b c-a d}\right )^{3/2} \, _2F_1\left (\frac{3}{2},\frac{9}{2};\frac{11}{2};\frac{d (a+b x)}{a d-b c}\right )}{9 b (c+d x)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x)^(7/2)/(c + d*x)^(3/2),x]

[Out]

(2*(a + b*x)^(9/2)*((b*(c + d*x))/(b*c - a*d))^(3/2)*Hypergeometric2F1[3/2, 9/2, 11/2, (d*(a + b*x))/(-(b*c) +
 a*d)])/(9*b*(c + d*x)^(3/2))

________________________________________________________________________________________

Maple [F]  time = 0.033, size = 0, normalized size = 0. \begin{align*} \int{ \left ( bx+a \right ) ^{{\frac{7}{2}}} \left ( dx+c \right ) ^{-{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^(7/2)/(d*x+c)^(3/2),x)

[Out]

int((b*x+a)^(7/2)/(d*x+c)^(3/2),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(7/2)/(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 7.12697, size = 1312, normalized size = 7.54 \begin{align*} \left [-\frac{105 \,{\left (b^{3} c^{4} - 3 \, a b^{2} c^{3} d + 3 \, a^{2} b c^{2} d^{2} - a^{3} c d^{3} +{\left (b^{3} c^{3} d - 3 \, a b^{2} c^{2} d^{2} + 3 \, a^{2} b c d^{3} - a^{3} d^{4}\right )} x\right )} \sqrt{\frac{b}{d}} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 4 \,{\left (2 \, b d^{2} x + b c d + a d^{2}\right )} \sqrt{b x + a} \sqrt{d x + c} \sqrt{\frac{b}{d}} + 8 \,{\left (b^{2} c d + a b d^{2}\right )} x\right ) - 4 \,{\left (8 \, b^{3} d^{3} x^{3} + 105 \, b^{3} c^{3} - 280 \, a b^{2} c^{2} d + 231 \, a^{2} b c d^{2} - 48 \, a^{3} d^{3} - 2 \,{\left (7 \, b^{3} c d^{2} - 19 \, a b^{2} d^{3}\right )} x^{2} +{\left (35 \, b^{3} c^{2} d - 98 \, a b^{2} c d^{2} + 87 \, a^{2} b d^{3}\right )} x\right )} \sqrt{b x + a} \sqrt{d x + c}}{96 \,{\left (d^{5} x + c d^{4}\right )}}, \frac{105 \,{\left (b^{3} c^{4} - 3 \, a b^{2} c^{3} d + 3 \, a^{2} b c^{2} d^{2} - a^{3} c d^{3} +{\left (b^{3} c^{3} d - 3 \, a b^{2} c^{2} d^{2} + 3 \, a^{2} b c d^{3} - a^{3} d^{4}\right )} x\right )} \sqrt{-\frac{b}{d}} \arctan \left (\frac{{\left (2 \, b d x + b c + a d\right )} \sqrt{b x + a} \sqrt{d x + c} \sqrt{-\frac{b}{d}}}{2 \,{\left (b^{2} d x^{2} + a b c +{\left (b^{2} c + a b d\right )} x\right )}}\right ) + 2 \,{\left (8 \, b^{3} d^{3} x^{3} + 105 \, b^{3} c^{3} - 280 \, a b^{2} c^{2} d + 231 \, a^{2} b c d^{2} - 48 \, a^{3} d^{3} - 2 \,{\left (7 \, b^{3} c d^{2} - 19 \, a b^{2} d^{3}\right )} x^{2} +{\left (35 \, b^{3} c^{2} d - 98 \, a b^{2} c d^{2} + 87 \, a^{2} b d^{3}\right )} x\right )} \sqrt{b x + a} \sqrt{d x + c}}{48 \,{\left (d^{5} x + c d^{4}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(7/2)/(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

[-1/96*(105*(b^3*c^4 - 3*a*b^2*c^3*d + 3*a^2*b*c^2*d^2 - a^3*c*d^3 + (b^3*c^3*d - 3*a*b^2*c^2*d^2 + 3*a^2*b*c*
d^3 - a^3*d^4)*x)*sqrt(b/d)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2*b*d^2*x + b*c*d + a*d^2)*
sqrt(b*x + a)*sqrt(d*x + c)*sqrt(b/d) + 8*(b^2*c*d + a*b*d^2)*x) - 4*(8*b^3*d^3*x^3 + 105*b^3*c^3 - 280*a*b^2*
c^2*d + 231*a^2*b*c*d^2 - 48*a^3*d^3 - 2*(7*b^3*c*d^2 - 19*a*b^2*d^3)*x^2 + (35*b^3*c^2*d - 98*a*b^2*c*d^2 + 8
7*a^2*b*d^3)*x)*sqrt(b*x + a)*sqrt(d*x + c))/(d^5*x + c*d^4), 1/48*(105*(b^3*c^4 - 3*a*b^2*c^3*d + 3*a^2*b*c^2
*d^2 - a^3*c*d^3 + (b^3*c^3*d - 3*a*b^2*c^2*d^2 + 3*a^2*b*c*d^3 - a^3*d^4)*x)*sqrt(-b/d)*arctan(1/2*(2*b*d*x +
 b*c + a*d)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(-b/d)/(b^2*d*x^2 + a*b*c + (b^2*c + a*b*d)*x)) + 2*(8*b^3*d^3*x^3
 + 105*b^3*c^3 - 280*a*b^2*c^2*d + 231*a^2*b*c*d^2 - 48*a^3*d^3 - 2*(7*b^3*c*d^2 - 19*a*b^2*d^3)*x^2 + (35*b^3
*c^2*d - 98*a*b^2*c*d^2 + 87*a^2*b*d^3)*x)*sqrt(b*x + a)*sqrt(d*x + c))/(d^5*x + c*d^4)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b x\right )^{\frac{7}{2}}}{\left (c + d x\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**(7/2)/(d*x+c)**(3/2),x)

[Out]

Integral((a + b*x)**(7/2)/(c + d*x)**(3/2), x)

________________________________________________________________________________________

Giac [B]  time = 1.16745, size = 423, normalized size = 2.43 \begin{align*} \frac{{\left ({\left (2 \,{\left (\frac{4 \,{\left (b x + a\right )} b^{2} d^{6}}{b^{10} c d^{8} - a b^{9} d^{9}} - \frac{7 \,{\left (b^{3} c d^{5} - a b^{2} d^{6}\right )}}{b^{10} c d^{8} - a b^{9} d^{9}}\right )}{\left (b x + a\right )} + \frac{35 \,{\left (b^{4} c^{2} d^{4} - 2 \, a b^{3} c d^{5} + a^{2} b^{2} d^{6}\right )}}{b^{10} c d^{8} - a b^{9} d^{9}}\right )}{\left (b x + a\right )} + \frac{105 \,{\left (b^{5} c^{3} d^{3} - 3 \, a b^{4} c^{2} d^{4} + 3 \, a^{2} b^{3} c d^{5} - a^{3} b^{2} d^{6}\right )}}{b^{10} c d^{8} - a b^{9} d^{9}}\right )} \sqrt{b x + a}}{184320 \, \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d}} + \frac{7 \,{\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \log \left ({\left | -\sqrt{b d} \sqrt{b x + a} + \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d} \right |}\right )}{12288 \, \sqrt{b d} b^{7} d^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(7/2)/(d*x+c)^(3/2),x, algorithm="giac")

[Out]

1/184320*((2*(4*(b*x + a)*b^2*d^6/(b^10*c*d^8 - a*b^9*d^9) - 7*(b^3*c*d^5 - a*b^2*d^6)/(b^10*c*d^8 - a*b^9*d^9
))*(b*x + a) + 35*(b^4*c^2*d^4 - 2*a*b^3*c*d^5 + a^2*b^2*d^6)/(b^10*c*d^8 - a*b^9*d^9))*(b*x + a) + 105*(b^5*c
^3*d^3 - 3*a*b^4*c^2*d^4 + 3*a^2*b^3*c*d^5 - a^3*b^2*d^6)/(b^10*c*d^8 - a*b^9*d^9))*sqrt(b*x + a)/sqrt(b^2*c +
 (b*x + a)*b*d - a*b*d) + 7/12288*(b^2*c^2 - 2*a*b*c*d + a^2*d^2)*log(abs(-sqrt(b*d)*sqrt(b*x + a) + sqrt(b^2*
c + (b*x + a)*b*d - a*b*d)))/(sqrt(b*d)*b^7*d^5)